Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318941

RESUMO

Anomaluromorpha is a particularly puzzling suborder of Rodentia. Endemic to Africa, this clade includes the extant genera Idiurus, Anomalurus, Zenkerella, and Pedetes. These rodents present an hystricomorphous condition of the skull, characterized by a large infraorbital foramen, which evolved independently within the mouse-related clade over a span of approximately 57 million years. They exhibit a high disparity in craniomandibular and dental morphology that has kept their phylogenetic affinities disputed for a long time. Given the past significance of masticatory morphotypes in establishing the classification of Rodentia, we propose to explore variations in the masticatory apparatus of Anomaluromorpha in order to evaluate whether its related features can offer additional data for systematics and contribute to our understanding of the complexity of hystricomorphy. In order to do so, we used traditional dissection and diffusible iodine-based contrast-enhanced computed tomography (diceCT) to accurately describe and compare the anatomy of the specimens. We found that the muscle morphology displays clear differentiation among each anomaluromorph taxonomic unit. Specifically, the masseteric complex of Anomaluromorpha exhibits distinctive synapomorphies such as the infraorbital part of the zygomaticomandibularis muscle being separated into a rostral and orbital part and an absence of a posterior part of the zygomaticomandibularis. Additionally, the orbital portion of the infraorbital part originates from a well-marked ridge and fossa at the level of its area of origin on the anteromedial wall of the orbital cavity, a feature that is absent in other members of the mouse-related clade. This evident bony feature, among others, is strongly associated with muscular anatomy and can contribute to ascertaining the taxonomic status of extinct representatives of the clade. Finally, we showed that the hystricomorphy of Anomaluromorpha largely differs from those of Ctenohystrica and Dipodoidea and that the definition of this morphotype is complex and cannot be reduced simply to the size of the opening of the infraorbital foramen.

2.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972291

RESUMO

Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.


Assuntos
Receptores Odorantes , Roedores , Feminino , Gravidez , Animais , Filogenia , Roedores/genética , Variações do Número de Cópias de DNA , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Placenta/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Evolução Molecular
3.
Nat Commun ; 14(1): 4425, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479710

RESUMO

The evolution of endothermy in vertebrates is a major research topic in recent decades that has been tackled by a myriad of research disciplines including paleontology, anatomy, physiology, evolutionary and developmental biology. The ability of most mammals to maintain a relatively constant and high body temperature is considered a key adaptation, enabling them to successfully colonize new habitats and harsh environments. It has been proposed that in mammals the anterior nasal cavity, which houses the maxilloturbinal, plays a pivotal role in body temperature maintenance, via a bony system supporting an epithelium involved in heat and moisture conservation. The presence and the relative size of the maxilloturbinal has been proposed to reflect the endothermic conditions and basal metabolic rate in extinct vertebrates. We show that there is no evidence to relate the origin of endothermy and the development of some turbinal bones by using a comprehensive dataset of µCT-derived maxilloturbinals spanning most mammalian orders. Indeed, we demonstrate that neither corrected basal metabolic rate nor body temperature significantly correlate with the relative surface area of the maxilloturbinal. Instead, we identify important variations in the relative surface area, morpho-anatomy, and complexity of the maxilloturbinal across the mammalian phylogeny and species ecology.


Assuntos
Aclimatação , Mamíferos , Animais , Metabolismo Basal , Temperatura Corporal , Ecologia
4.
Biol Lett ; 19(4): 20230080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042683

RESUMO

Linking genes to phenotypes has been a major question in evolutionary biology for the last decades. In the genomic era, few studies attempted to link olfactory-related genes to different anatomical proxies. However, they found very inconsistent results. This study is the first to investigate a potential relation between olfactory turbinals and olfactory receptor (OR) genes. We demonstrated that despite the use of similar methodology in the acquisition of data, OR genes do not correlate with the relative and the absolute surface area of olfactory turbinals. These results challenged the interpretations of several studies based on different proxies related to olfaction and their potential relation to olfactory capabilities.


Assuntos
Cavidade Nasal , Olfato , Animais , Cavidade Nasal/anatomia & histologia , Roedores/genética , Evolução Biológica , Genoma
5.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300780

RESUMO

The origins and evolution of the outstanding Neotropical biodiversity are a matter of intense debate. A comprehensive understanding is hindered by the lack of deep-time comparative data across wide phylogenetic and ecological contexts. Here, we quantify the prevailing diversification trajectories and drivers of Neotropical diversification in a sample of 150 phylogenies (12,512 species) of seed plants and tetrapods, and assess their variation across Neotropical regions and taxa. Analyses indicate that Neotropical diversity has mostly expanded through time (70% of the clades), while scenarios of saturated and declining diversity account for 21% and 9% of Neotropical diversity, respectively. Five biogeographic areas are identified as distinctive units of long-term Neotropical evolution, including Pan-Amazonia, the Dry Diagonal, and Bahama-Antilles. Diversification dynamics do not differ across these areas, suggesting no geographic structure in long-term Neotropical diversification. In contrast, diversification dynamics differ across taxa: plant diversity mostly expanded through time (88%), while a substantial fraction (43%) of tetrapod diversity accumulated at a slower pace or declined towards the present. These opposite evolutionary patterns may reflect different capacities for plants and tetrapods to cope with past climate changes.


Assuntos
Biodiversidade , Plantas , Filogenia , Plantas/genética , Brasil , Especiação Genética
6.
Curr Biol ; 32(19): 4215-4224.e3, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057260

RESUMO

Sahul unites the world's largest and highest tropical island and the oldest and most arid continent on the backdrop of dynamic environmental conditions. Massive geological uplift in New Guinea is predicted to have acted as a species pump from the late Miocene onward, but the impact of this process on biogeography and diversification remains untested across Sahul as a whole. To address this, we reconstruct the assembly of a recent and diverse radiation of rodents (Murinae: Hydromyini) spanning New Guinea, Australia, and oceanic islands. Using phylogenomic data from 270 specimens, including many recently extinct and highly elusive species, we find that the orogeny and expansion of New Guinea opened ecological opportunity and triggered diversification across a continent. After a single over-water colonization from Asia ca. 8.5 Ma, ancestral Hydromyini were restricted to the tropical rainforest of proto-New Guinea for 3.5 million years. Following a shift in diversification coincident with the orogeny of New Guinea ca. 5 Ma and subsequent colonization of Australia, transitions between geographic regions (n = 24) and biomes (n = 34) become frequent. Recurrent over-water colonization between mainland and islands demonstrate how islands can play a substantial role in the assembly of continental fauna. Our results are consistent with a model of increased ecological opportunity across Sahul following major geological uplift in New Guinea ca. 5 Ma, with sustained diversification facilitated by over-water colonization from the Pleistocene to present. We show how geological processes, biome transitions, and over-water colonization collectively drove the diversification of an expansive continental radiation.


Assuntos
Ecossistema , Roedores , Animais , Nova Guiné , Filogenia , Filogeografia , Água
7.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312232

RESUMO

Biotic interactions between Africa and Eurasia across the Levant have invoked particular attention among scientists aiming to unravel early human dispersals. However, it remains unclear whether behavioral capacities enabled early modern humans to surpass the Saharo-Arabian deserts or if climatic changes triggered punctuated dispersals out of Africa. Here, we report an unusual subfossil assemblage discovered in a Judean Desert's cliff cave near the Dead Sea and dated to between ∼42,000 and at least 103,000 y ago. Paleogenomic and morphological comparisons indicate that the specimens belong to an extinct subspecies of the eastern African crested rat, Lophiomys imhausi maremortum subspecies nova, which diverged from the modern eastern African populations in the late Middle Pleistocene ∼226,000 to 165,000 y ago. The reported paleomitogenome is the oldest so far in the Levant, opening the door for future paleoDNA analyses in the region. Species distribution modeling points to the presence of continuous habitat corridors connecting eastern Africa with the Levant during the Last Interglacial ∼129,000 to 116,000 y ago, providing further evidence of the northern ingression of African biomes into Eurasia and reinforcing previous suggestions of the critical role of climate change in Late Pleistocene intercontinental biogeography. Furthermore, our study complements other paleoenvironmental proxies with local-instead of interregional-paleoenvironmental data, opening an unprecedented window into the Dead Sea rift paleolandscape.


Assuntos
Distribuição Animal , Migração Humana , Roedores/anatomia & histologia , África , Animais , Ásia , Europa (Continente) , Humanos , Roedores/fisiologia
8.
Zootaxa ; 4979(1): 7094, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34187013

RESUMO

Zootaxa came as a new and innovative publication medium for taxonomy, amidst a scenario of devaluation of this important biological science. After 20 years, it has ascertained itself as one of the main journals in animal taxonomy. However, the contribution of the journal to the taxonomy of Mammalia (mammals), one of the most studied groups of animals with a long-standing, dedicated spectrum of specialized journals (mammalogy), could have been expected as minor. All the current and former editors of the Mammalia section of Zootaxa analyzed the relative contribution of the journal to the description of new species of mammals since 2001. We also analyzed the contribution of Zootaxa by taxon, geographic origin of taxa, and geographic origin of first authors. The taxonomic methodology of authors in species description is described as well as the temporal trends in publications and publication subjects. We highlight the editors' picks and eventually, the challenges for the future. We found that Zootaxa has had a significant contribution to mammalogy, being the second journal (the first being Journal of Mammalogy) in terms of number of new species described (76; 10.6% of the new mammalian species described between 2001 and 2020). The majority of the new species were described following an integrative taxonomic approach with at least two sources of data (86%). The analysis of published taxa, their geographic origin, and the country of origin of first authors shows a wide coverage and exhaustive representation, except for the species from the Nearctic. We conclude that Zootaxa has likely responded to a repressed demand for an additional taxonomic journal in mammalogy, with as possible appeals the absence of publication fees and an established publication speed. With 246 articles published in the past 20 years, the Mammalia section of Zootaxa embraces a large spectrum of systematic subjects going beyond alpha taxonomy. The challenges for the future are to encourage publications of authors from the African continent, still poorly represented, and from the palaeontology community, as the journal has been open to palaeontology since its early days.


Assuntos
Mamíferos/classificação , Animais , Publicações Periódicas como Assunto
9.
PeerJ ; 8: e9690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983632

RESUMO

BACKGROUND: Ecological adaptations of mammals are reflected in the morphological diversity of their feeding apparatus, which includes differences in tooth crown morphologies, variation in snout size, or changes in muscles of the feeding apparatus. The adaptability of their feeding apparatus allowed them to optimize resource exploitation in a wide range of habitats. The combination of computer-assisted X-ray microtomography (µ-CT) with contrast-enhancing staining protocols has bolstered the reconstruction of three-dimensional (3D) models of muscles. This new approach allows for accurate descriptions of muscular anatomy, as well as the quick measurement of muscle volumes and fiber orientation. Ant- and termite-eating (myrmecophagy) represents a case of extreme feeding specialization, which is usually accompanied by tooth reduction or complete tooth loss, snout elongation, acquisition of a long vermiform tongue, and loss of the zygomatic arch. Many of these traits evolved independently in distantly-related mammalian lineages. Previous reports on South American anteaters (Vermilingua) have shown major changes in the masticatory, intermandibular, and lingual muscular apparatus. These changes have been related to a functional shift in the role of upper and lower jaws in the evolutionary context of their complete loss of teeth and masticatory ability. METHODS: We used an iodine staining solution (I2KI) to perform contrast-enhanced µ-CT scanning on heads of the pygmy (Cyclopes didactylus), collared (Tamandua tetradactyla) and giant (Myrmecophaga tridactyla) anteaters. We reconstructed the musculature of the feeding apparatus of the three extant anteater genera using 3D reconstructions complemented with classical dissections of the specimens. We performed a description of the musculature of the feeding apparatus in the two morphologically divergent vermilinguan families (Myrmecophagidae and Cyclopedidae) and compared it to the association of morphological features found in other myrmecophagous placentals. RESULTS: We found that pygmy anteaters (Cyclopes) present a relatively larger and architecturally complex temporal musculature than that of collared (Tamandua) and giant (Myrmecophaga) anteaters, but shows a reduced masseter musculature, including the loss of the deep masseter. The loss of this muscle concurs with the loss of the jugal bone in Cyclopedidae. We show that anteaters, pangolins, and aardvarks present distinct anatomies despite morphological and ecological convergences.

10.
Proc Natl Acad Sci U S A ; 117(16): 8958-8965, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253313

RESUMO

Olfaction and thermoregulation are key functions for mammals. The former is critical to feeding, mating, and predator avoidance behaviors, while the latter is essential for homeothermy. Aquatic and amphibious mammals face olfactory and thermoregulatory challenges not generally encountered by terrestrial species. In mammals, the nasal cavity houses a bony system supporting soft tissues and sensory organs implicated in either olfactory or thermoregulatory functions. It is hypothesized that to cope with aquatic environments, amphibious mammals have expanded their thermoregulatory capacity at the expense of their olfactory system. We investigated the evolutionary history of this potential trade-off using a comparative dataset of three-dimensional (3D) CT scans of 189 skulls, capturing 17 independent transitions from a strictly terrestrial to an amphibious lifestyle across small mammals (Afrosoricida, Eulipotyphla, and Rodentia). We identified rapid and repeated loss of olfactory capacities synchronously associated with gains in thermoregulatory capacity in amphibious taxa sampled from across mammalian phylogenetic diversity. Evolutionary models further reveal that these convergences result from faster rates of turbinal bone evolution and release of selective constraints on the thermoregulatory-olfaction trade-off in amphibious species. Lastly, we demonstrated that traits related to vital functions evolved faster to the optimum compared to traits that are not related to vital functions.


Assuntos
Evolução Biológica , Regulação da Temperatura Corporal/fisiologia , Mamíferos/fisiologia , Cavidade Nasal/fisiologia , Olfato/fisiologia , Animais , Imageamento Tridimensional , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/diagnóstico por imagem , Filogenia , Natação/fisiologia , Tomografia Computadorizada por Raios X , Conchas Nasais/anatomia & histologia , Conchas Nasais/diagnóstico por imagem , Conchas Nasais/fisiologia
11.
Mol Phylogenet Evol ; 144: 106703, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816395

RESUMO

Wood mice of the genus Hylomyscus, are small-sized rodents widely distributed in lowland and montane rainforests in tropical Africa, where they can be locally abundant. Recent morphological and molecular studies have increased the number of recognized species from 8 to 18 during the last 15 years. We used complete mitochondrial genomes and five nuclear genes to infer the number of candidate species within this genus and depict its evolutionary history. In terms of gene sampling and geographical and taxonomic coverage, this is the most comprehensive review of the genus Hylomyscus to date. The six species groups (aeta, alleni, anselli, baeri, denniae and parvus) defined on morphological grounds are monophyletic. Species delimitation analyses highlight undescribed diversity within this genus: perhaps up to 10 taxa need description or elevation from synonymy, pending review of type specimens. Our divergence dating and biogeographical analyses show that diversification of the genus occurred after the end of the Miocene and is closely linked to the history of the African forest. The formation of the Rift Valley combined with the declining global temperatures during the Late Miocene caused the fragmentation of the forests and explains the first split between the denniae group and remaining lineages. Subsequently, periods of increased climatic instability during Plio-Pleistocene probably resulted in elevated diversification in both lowland and montane forest taxa.


Assuntos
Evolução Biológica , Variação Genética , Genoma Mitocondrial , Murinae/classificação , Murinae/genética , África , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Ecossistema , Florestas , Camundongos , Filogenia , Análise de Sequência de DNA , Clima Tropical
12.
Mol Phylogenet Evol ; 136: 241-253, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885830

RESUMO

Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family's phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias - formerly placed in the Capromyidae family - as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae.


Assuntos
Filogenia , Roedores/classificação , Roedores/genética , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Evolução Molecular , Éxons/genética , Análise de Sequência de DNA , Índias Ocidentais
13.
Sci Rep ; 8(1): 17806, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546026

RESUMO

Turbinal bones are key components of the mammalian rostrum that contribute to three critical functions: (1) homeothermy, (2) water conservation and (3) olfaction. With over 700 extant species, murine rodents (Murinae) are the most species-rich mammalian subfamily, with most of that diversity residing in the Indo-Australian Archipelago. Their evolutionary history includes several cases of putative, but untested ecomorphological convergence, especially with traits related to diet. Among the most spectacular rodent ecomorphs are the vermivores which independently evolved in several island systems. We used 3D CT-scans (N = 87) of murine turbinal bones to quantify olfactory capacities as well as heat or water conservation adaptations. We obtained similar results from an existing 2D complexity method and two new 3D methodologies that quantify bone complexity. Using comparative phylogenetic methods, we identified a significant convergent signal in the rostral morphology within the highly specialised vermivores. Vermivorous species have significantly larger and more complex olfactory turbinals than do carnivores and omnivores. Increased olfactory capacities may be a major adaptive feature facilitating rats' capacity to prey on elusive earthworms. The narrow snout that characterises vermivores exhibits significantly reduced respiratory turbinals, which may reduce their heat and water conservation capacities.


Assuntos
Evolução Biológica , Carnivoridade/fisiologia , Murinae , Cavidade Nasal , Bulbo Olfatório , Animais , Austrália , Murinae/anatomia & histologia , Murinae/fisiologia , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/fisiologia
14.
Mol Biol Evol ; 34(3): 613-633, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025278

RESUMO

Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorinae), and 5 genera of West Indian hutias (Capromyidae) relatives. Here, we used Illumina shotgun sequencing to assemble 38 new complete mitogenomes, establishing Echimyidae, and Capromyidae as the first major rodent families to be completely sequenced at the genus-level for their mitochondrial DNA. Combining mitogenomes and nuclear exons, we inferred a robust phylogenetic framework that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents. Incorporating the full generic diversity of extant echimyids leads us to propose a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae. Of note, the enigmatic Carterodon displays fast-evolving mitochondrial and nuclear sequences, with a long branch that destabilizes the deepest divergences of the echimyid tree, thereby challenging the sister-group relationship between Capromyidae and Euryzygomatomyinae. Biogeographical analyses involving higher level taxa show that several vicariant and dispersal events impacted the evolutionary history of echimyids. The diversification history of Echimyidae seems to have been influenced by two major historical factors, namely (1) recurrent connections between Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , Roedores/genética , Animais , Sequência de Bases , Teorema de Bayes , Evolução Biológica , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Filogenia , Filogeografia/métodos , Ratos , Análise de Sequência de DNA/métodos , América do Sul
15.
J Virol ; 90(18): 8169-80, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384662

RESUMO

UNLABELLED: Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE: Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa.


Assuntos
Vírus da Leucemia do Macaco Gibão/isolamento & purificação , Murinae/virologia , Infecções por Retroviridae/veterinária , Doenças dos Roedores/virologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Indonésia , Vírus da Leucemia do Macaco Gibão/genética , Hibridização de Ácido Nucleico , Provírus/genética , Provírus/isolamento & purificação , Infecções por Retroviridae/virologia , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 94(Pt A): 87-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26327328

RESUMO

The Corvides (previously referred to as the core Corvoidea) are a morphologically diverse clade of passerine birds comprising nearly 800 species. The group originated some 30 million years ago in the proto-Papuan archipelago, to the north of Australia, from where lineages have dispersed and colonized all of the world's major continental and insular landmasses (except Antarctica). During the last decade multiple species-level phylogenies have been generated for individual corvoid families and more recently the inter-familial relationships have been resolved, based on phylogenetic analyses using multiple nuclear loci. In the current study we analyse eight nuclear and four mitochondrial loci to generate a dated phylogeny for the majority of corvoid species. This phylogeny includes 667 out of 780 species (85.5%), 141 out of 143 genera (98.6%) and all 31 currently recognized families, thus providing a baseline for comprehensive macroecological, macroevolutionary and biogeographical analyses. Using this phylogeny we assess the temporal consistency of the current taxonomic classification of families and genera. By adopting an approach that enforces temporal consistency by causing the fewest possible taxonomic changes to currently recognized families and genera, we find the current familial classification to be largely temporally consistent, whereas that of genera is not.


Assuntos
Passeriformes/classificação , Passeriformes/genética , Filogenia , Animais , Austrália , Núcleo Celular/genética , DNA Mitocondrial/genética
17.
Evolution ; 69(7): 1874-924, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-26095612

RESUMO

Birds vary greatly in their life-history strategies, including their breeding systems, which range from brood parasitism to a system with multiple nonbreeding helpers at the nest. By far the most common arrangement, however, is where both parents participate in raising the young. The traits associated with parental care have been suggested to affect dispersal propensity and lineage diversification, but to date tests of this potential relationship at broad temporal and spatial scales have been limited. Here, using data from a globally distributed group of corvoid birds in concordance with state-dependent speciation and extinction models, we suggest that pair breeding is associated with elevated speciation rates. Estimates of transition between breeding systems imply that cooperative lineages frequently evolve biparental care, whereas pair breeders rarely become cooperative. We further highlight that these groups have differences in their spatial distributions, with pair breeders overrepresented on islands, and cooperative breeders mainly found on continents. Finally, we find that speciation rates appear to be significantly higher on islands compared to continents. These results imply that the transition from cooperative breeding to pair breeding was likely a significant contributing factor facilitating dispersal across tropical archipelagos, and subsequent world-wide phylogenetic expansion among the core Corvoidea.


Assuntos
Distribuição Animal , Evolução Biológica , Reprodução , Aves Canoras/fisiologia , Animais
18.
Biol Lett ; 10(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25115033

RESUMO

The Capromyidae (hutias) are endemic rodents of the Caribbean and represent a model of dispersal for non-flying mammals in the Greater Antilles. This family has experienced severe extinctions during the Holocene and its phylogenetic affinities with respect to other caviomorph relatives are still debated as morphological and molecular data disagree. We used target enrichment and next-generation sequencing of mitochondrial and nuclear genes to infer the phylogenetic relationships of hutias, estimate their divergence ages, and understand their mode of dispersal in the Greater Antilles.We found that Capromyidae are nested within Echimyidae (spiny rats) and should be considered a subfamily thereof. We estimated that the split between hutias and Atlantic Forest spiny rats occurred 16.5 (14.8­18.2) million years ago (Ma), which is more recent than the GAARlandia land bridge hypothesis (34­35 Ma). This would suggest that during the Early Miocene, an echimyid-like ancestor colonized the Greater Antilles from an eastern South American source population via rafting. The basal divergence of the Hispaniolan Plagiodontia provides further support for a vicariant separation between Hispaniolan and western islands (Bahamas, Cuba, Jamaica) hutias. Recent divergences among these western hutias suggest Plio-Pleistocene dispersal waves associated with glacial cycles.


Assuntos
Filogenia , Roedores/classificação , Roedores/genética , Animais , Sequência de Bases , Evolução Biológica , Região do Caribe , Mitocôndrias/genética , Dados de Sequência Molecular , Filogeografia , RNA Ribossômico/genética , Análise de Sequência de DNA
19.
Mol Phylogenet Evol ; 79: 422-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25008107

RESUMO

We inferred the phylogenetic relationships, divergence time and biogeography of Conopophagidae (gnateaters) based on sequence data of mitochondrial genes (ND2, ND3 and cytb) and nuclear introns (TGFB2 and G3PDH) from 45 tissue samples (43 Conopophaga and 2 Pittasoma) representing all currently recognized species of the family and the majority of subspecies. Phylogenetic relationships were estimated by maximum likelihood and Bayesian inference. Divergence time estimates were obtained based on a Bayesian relaxed clock model. These chronograms were used to calculate diversification rates and reconstruct ancestral areas of the genus Conopophaga. The phylogenetic analyses support the reciprocal monophyly of the two genera, Conopophaga and Pittasoma. All species were monophyletic with the exception of C. lineata, as C. lineata cearae did not cluster with the other two C. lineata subspecies. Divergence time estimates for Conopophagidae suggested that diversification took place during the Neogene, and that the diversification rate within Conopophaga clade was highest in the late Miocene, followed by a slower diversification rate, suggesting a diversity-dependent pattern. Our analyses of the diversification of family Conopophagidae provided a scenario for evolution in Terra Firme forest across tropical South America. The spatio-temporal pattern suggests that Conopophaga originated in the Brazilian Shield and that a complex sequence of events possibly related to the Andean uplift and infilling of former sedimentation basins and erosion cycles shaped the current distribution and diversity of this genus.


Assuntos
Evolução Biológica , Passeriformes/classificação , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Florestas , Íntrons , Funções Verossimilhança , Modelos Genéticos , Passeriformes/genética , Filogeografia , Análise de Sequência de DNA , América do Sul
20.
Mol Phylogenet Evol ; 70: 272-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24125832

RESUMO

It is well established that the global expansion of songbirds (Oscines) originated in East Gondwana (present day Australo-Papua), and it has been postulated that one of the main constituent groups, the "core Corvoidea", with more than 750 species, originated in the first islands that emerged where New Guinea is now located. However, several polytomous relationships remained within the clade, obstructing detailed biogeographical interpretations. This study presents a well-resolved family-level phylogeny, based on a dataset of 22 nuclear loci and using a suite of partitioning schemes and Maximum Likelihood and Bayesian inference methods. Resolving the relationships within the core Corvoidea provides evidence for three well-supported main clades, which are in turn sister to the New Zealand genus Mohoua. Some monotypic lineages, which have previously been considered Incertae sedis, are also placed in a phylogenetic context. The well-resolved phylogeny provides a robust framework for biogeographical analyses, and provides further support for the hypothesis that core corvoids originated in the proto-Papuan island region that emerged north of Australia in the late Oligocene/early Miocene. Thus, the core Corvoidea appear to represent a true island radiation, which successfully colonized all continents except Antarctica.


Assuntos
Filogenia , Aves Canoras/genética , Animais , Teorema de Bayes , Feminino , Ilhas , Nova Guiné , Filogeografia , Análise de Sequência de DNA , Aves Canoras/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...